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Abstract
According to the principle of least action, the spatially periodic motions of
one-dimensional mechanical systems with no external forces are described in
the Lagrangian formalism by geodesics on a manifold-configuration space, the
group D of smooth orientation-preserving diffeomorphisms of the circle. The
periodic inviscid Burgers equation is the geodesic equation on D with the L2

right-invariant metric. However, the exponential map for this right-invariant
metric is not aC1 local diffeomorphism and the geometric structure is therefore
deficient. On the other hand, the geodesic equation on D for the H 1 right-
invariant metric is also a re-expression of a model in mathematical physics.
We show that in this case the exponential map is a C1 local diffeomorphism
and that if two diffeomorphisms are sufficiently close on D, they can be joined
by a unique length-minimizing geodesic—a state of the system is transformed
to another nearby state by going through a uniquely determined flow that
minimizes the energy. We also analyse for both metrics the breakdown of the
geodesic flow.

PACS numbers: 02.20.Tw, 02.30.lk, 02.30.Jr, 02.40.Vh, 45.10.Db, 47.45.+i

1. Introduction

Motions of mechanical systems with no external forces are described in the Lagrangian
formalism by paths on a configuration space G that is a Lie group. The velocity phase
space is the tangent bundle TG of G. Let G be the Lie algebra of G—the tangent space
at the neutral element of the group. For a nondegenerated inner product 〈·, ·〉, the quantity
1
2 〈v, v〉, v ∈ G, is called the kinetic energy K. We can extend K by right or left translation3 to a
3 In general, the Lagrangian is a scalar function L : TG → R so that constancy under particular transformation of
its arguments is the only sort of symmetry to which it can be subject. This explains the preferred choice of right- or
left-invariance.
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right- or left-invariant Lagrangian L : TG → R in order to define a ‘natural Lagrangian
system’ on G [2]. The action along a path g(t), a � t � b, in G is defined as

∫ b
a
L(g, gt ) dt .

The action principle (cf [41]) states that the equation of motion is the equation satisfied by an
extremal (a critical point) of the action in the space of curves on G, the paths g(t) over which
we are extremizing satisfying the fixed end conditions g(a) = g0 and g(b) = g1. In many
cases (cf [2]), the paths described by the motion of a mechanical system are not only extremals
but also (local) minimal values of the action functional—the principle of least action holds.
Observe that if g(t), a � t � b, is a C1-regular path (i.e. gt �= 0 on [a, b]) joining g(a) = g0

to g(b) = g1, the action a(g) = 1
2

∫ b
a
〈gt , gt 〉 dt depends on the parametrization of the path.

On the other hand, the length l(g) = ∫ b
a
〈gt , gt 〉 1

2 dt does not depend on the parametrization
and l2(g) � 2(b − a)a(g), with equality if and only if 〈gt , gt 〉 is constant on [a, b]. From
here we infer that the (local) minimum of the action is realized by the curve of minimal length
joining g0 to g1. In conclusion, for the principle of least action to hold, it is necessary that the
equation of motion is the geodesic equation on the configuration manifold.

The configuration space of a rigid body4 fixed at its centre of mass is the group SO(3) of
rotations of R

3. An element g of the group corresponds to a position of the body obtained by
the motion g from some arbitrarily chosen initial state (corresponding to the identity element
of the group) and a rotation velocity gt of the body is a vector in the tangent space TgG. The
kinetic energy of a body is determined by the vector of angular velocity in the body (obtained
by carrying the tangent vector to G, the tangent space at the identity, by left translation) and
does not depend on the position of the body in the space. Therefore, the kinetic energy
gives a left-invariant Riemannian metric on the group. By the principle of least action [2] the
motion of a rigid body with no external forces is geodesic in SO(3) with this left-invariant
metric.

The motion of a system in continuum mechanics is described by a path of diffeomorphisms
ϕ(t, ·) of the ambient space. The knowledge of ϕ(t, ·) gives the configuration of the particles
at time t. The material velocity field is defined by (t, x) �→ ϕt(t, x) while the spatial velocity
field is given by u(t, y) = ϕt(t, x) where y = ϕ(t, x), i.e. u(t, ·) = ϕt ◦ ϕ−1. In terms of u
we have the spatial or Eulerian description (from the viewpoint of a fixed observer) while
in terms of (ϕ, ϕt) we have the material or Lagrangian description (the motion as seen from
one of the particles—the observer follows the particle). Note the following right-invariance
property: if we replace the path t �→ ϕ(t) by t �→ ϕ(t) ◦ η for a fixed time-independent
η ∈ D, then the spatial velocity u = ϕt ◦ ϕ−1 is unchanged. This suggests the choice
of right-invariance rather than left-invariance. In the case of a perfect fluid (nonviscous,
homogeneous and incompressible) moving in a bounded smooth domain M ⊂ R

k, k = 2, 3,
the configuration space is the group of all volume-preserving diffeomorphisms of M. Arnold [1]
observed that the kinetic energy of the fluid, 1

2

∫
M

|u(t, x)|2 dx, is invariant with respect to
right translations. The invariance of the kinetic energy with respect to right translations
is due to incompressibility (the diffeomorphisms are volume preserving), as one can see
from a simple change of variables. The obtained geodesic equation is the Euler equation of
hydrodynamics [1].

In this review we consider the one-dimensional compressible analogue of the description
of the Euler equation for a perfect fluid in two and three dimensions by means of geodesics
on the group of volume-preserving diffeomorphisms, a description established by Arnold
[1] and placed on a rigorous foundation by Ebin and Marsden [22]. The group D of
smooth orientation-preserving diffeomorphisms of the circle S (the real numbers modulo 1)

4 A rigid body is a system of point masses constrained by the fact that the distance between points is constant [2].



Topical Review R53

represents the configuration space for the spatially periodic motion of inertial one-dimensional
mechanical systems.

The choice of the L2 inner product on each tangent space does not provide us with a
right-invariant metric in the one-dimensional compressible case—incompressibility in one
dimension would force the diffeomorphisms to be linear. We are therefore led to define an
inner product on the tangent space at the identity and produce a right-invariant metric by
transporting this inner product to all tangent spaces of D by means of right translations.

For theL2 right-invariant metric one obtains the inviscid Burgers equation as the geodesic
equation on D,

ut + 3uux = 0. (1.1)

The geometric approach is meaningful if we are able to use some methods that have been
developed in finite-dimensional Riemannian geometry. Unfortunately, as we shall see in
section 3, the Riemannian exponential map is not a C1 local diffeomorphism in the case of the
L2 right-invariant metric.

This raises the natural question whether another right-invariant metric may lead to
meaningful results. In view of this, we study the geodesic flow on D endowed with the H 1

right-invariantmetric5. The choice of this metric is motivated by the fact that the corresponding
geodesic equation is a re-expression of a model arising both in shallow water theory [8] and
in elasticity [18],

ut + uux + ∂x
(
1 − ∂2

x

)−1 (
u2 + 1

2u
2
x

) = 0. (1.2)

In any direction at a given point of D there exists a smooth geodesic on D. We show that the
Riemannian exponential map of the H 1 right-invariant metric is a C1 local diffeomorphism.
We also prove that with the H 1 right-invariant metric D is not geodesically complete and we
analyse the breakdown of the geodesic flow. Finally, we show that if two diffeomorphisms
are sufficiently close on D, they can be joined by a unique length-minimizing geodesic of
the H 1 right-invariant metric within D. This can be reformulated as a variational problem in
the family of smooth diffeomorphisms of the circle and illustrates the power of the geometric
approach. Intuitively, it says that a state of the system is transformed to another nearby state
by going through a uniquely determined flow of (1.2) that minimizes the energy.

2. Right-invariant metrics on D

In this section we present the manifold and Lie group structure of D, the group of orientation-
preserving C∞ diffeomorphisms of the circle, and we discuss the endowment of D with a
Riemannian structure.

2.1. The diffeomorphism group

D is a connected manifold modelled on the Fréchet space C∞(S) of smooth maps of the circle
(the family of real smooth maps on R of period 1), cf [26]. Recall that a Fréchet space is
a complete metrizable topological vector space, its topology being defined by a countable
collection of seminorms {‖ · ‖n}: a sequence uj → u if and only if for all n � 1 we have
‖uj − u‖n → 0 as j → ∞. On C∞(S) we consider the seminorms to be the Hk(S)-
norms with k � 0. If F1, F2 are Fréchet spaces, U ⊂ F1 is open and f : U ⊂ F1 → F2

is a continuous map, the derivative of f at u ∈ U in the direction v ∈ F1 is defined by
5 Hk(S), k ∈ N, stands for the Sobolev space of functions with distributional derivatives up to order k having finite
L2(S) norm.
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Df (u)v = limt→0
f (u+tv)−f (u)

t
.We say that f isC1 on U if the limit exists for all u ∈ U, v ∈ F1

and ifDf : U × F1 → F2 is continuous6. Higher derivatives are defined as derivatives of the
lower ones.

The composition and the inverse are both smooth maps from D × D → D, respectively
D → D, so that the group D is a Lie group [26]. The Lie algebra G of D is the tangent space
to D at the identity, TIdD ≡ C∞(S), with the bracket

[u, v] = −(uxv − uvx) u, v ∈ G.
Each vector field v on S (equivalently, each v ∈ TIdD) gives rise to a one-parameter group

of diffeomorphisms {η(t, ·)} obtained as solutions of the differential equation

ηt = v(η) in C∞(S) (2.1)

with initial condition η(0) = Id ∈ D. On the other hand, each one-parameter subgroup

t �→ η(t) ∈ D is uniquely determined by its infinitesimal generator v = ∂
∂t
η(t)

∣∣∣
t=0

∈ TIdD,

the limit being considered in theC∞(S) topology. Evaluating the flow t �→ η(t, ·) determined
by (2.1) at t = 1 we obtain a diffeomorphism expL(v). The diffeomorphism η(t, ·) is given
explicitly by η(t, x0) = x(t, x0), x0 ∈ S, where x(t, x0) is the unique global solution of the
ordinary differential equation dx

dt = v(x)with data x(0) = x0, cf [35]. The map v → expL(v),
called the Lie-group exponential map, is a smooth map of the Lie algebra to the Lie group.
Although the derivative of expL at the zero vector field is the identity, expL is not locally
surjective [35] so that the Lie-group exponential map cannot be used as a local chart on D.
This failure is possible since the inverse function theorem does not necessarily hold in Fréchet
spaces [26]. Note the contrast with the case of finite-dimensional Lie groups where the map
expL is always a local diffeomorphism from the Lie algebra to the Lie group [37].

Let F(D) be the ring of smooth real-valued functions defined on D and X (D) be the
F(D)-module of smooth vector fields on D. For X ∈ X (D) and f ∈ F(D), we define in a
local chart the Lie derivative LXf as

LXf (ϕ) = lim
h→0

f (ϕ + hX(ϕ))− f (ϕ)

h
ϕ ∈ D.

To define the Lie bracket ofX,Y ∈ X (D) we also proceed in local charts [35]. If U ⊂ C∞(S)
is open and X,Y : U → C∞(S) are smooth, we denote

DXY(ϕ) = lim
h→0

Y (ϕ + hX(ϕ))− Y (ϕ)

h
ϕ ∈ D.

We are led to define the vector field

[X,Y ] = DXY −DYX.

This definition is covariant and defines globally LXY = [X,Y ].
Let XR(D) be the space of all right-invariant smooth vector fields on D. Note that

X ∈ XR(D) is determined by its value u at Id,X(η) = Rηu for η ∈ D, where Rη stands for
the right translation. The bracket [X,Y ] of X,Y ∈ XR(D) is a right-invariant vector field7

and [X,Y ](Id) = [u, v], where u = X(Id), v = Y (Id) [35].

6 The definition differs from the case of Banach spaces due to the fact that in general the space of linear maps of F1
to F2 will not form a Fréchet space. See [26] for a review of the intricacies of the Fréchet differential calculus.
7 In view of the above discussion of expL, every right-invariant vector field has a smooth flow on D. The proof that
the bracket preserves right-invariance is therefore standard.
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2.2. Right-invariant metrics

TIdD ≡ C∞(S) is not a Hilbert space. We define a weak right-invariant Riemannian metric
on D as follows. We consider on TIdD ≡ C∞(S) a nondegenerate continuous inner product
〈·, ·, 〉. That is, u �→ 〈u, u〉 is a continuous (hence smooth) map on C∞(S) and the relation
〈u, v〉 = 0 for all v ∈ C∞(S) forces u = 0; a typical example would be the Hs(S)-inner
product with s � 0. To define a smooth right-invariant Riemannian metric on D, we extend
this inner product to each tangent space TηD by right translation, i.e.

〈V,W 〉(η) := 〈V ◦ η−1,W ◦ η−1〉 for V,W ∈ TηD. (2.2)

Each open set of the topology induced by this inner product is open in the Fréchet space
C∞(S) but the converse is not true—we defined a weak topology on C∞(S).

2.3. Covariant derivative

In order to define parallel translation along a curve on D and to derive the geodesic equation
of the metric defined by (2.2), it is necessary to show the existence of a covariant derivative ∇
which preserves the inner product (2.2). Let us point out that, given a smooth Riemannian
metric on D, the existence of a metric covariant derivative is not ensured on general grounds
as we deal with a Fréchet manifold. For the group of volume-preserving diffeomorphisms,
the existence of the metric covariant derivative has been established in [22]. We shall see
that a development related to the ideas considered in [1, 22] yields an existence result for the
covariant derivative in the case of a right-invariant metric on D. As the existence of such a
covariant derivative is assumed in the literature [3], it is of interest to provide a rigorous proof
for it.

Recall that a covariant derivative is defined as a R-bilinear operator ∇ : X (D)×X (D) →
X (D) with the following properties:

(i) X(η) = 0 implies ∇XY (η) = 0 (punctual dependence in X),
(ii) ∇XY − ∇YX = [X,Y ] for X,Y ∈ X (D) (torsion free),

(iii) ∇X(f Y ) = (LXf )Y + f∇XY for f ∈ F(D) and X,Y ∈ X (D), and for all X,Y,Z ∈
X (D),

(iv) LX〈Y,Z〉 = 〈∇XY,Z〉 + 〈Y,∇XZ〉 (compatibility with the metric).

Observe that (i) and the R-linearity in X force ∇XY to be F(D)-linear in X. In finite
dimensions, punctual dependence onX and F(D)-linearity inX are equivalent but this cannot
be ensured in infinite dimensions, [32] pp 202–3. Since D is a Fréchet manifold with a
weak Riemannian metric, in general the existence of a covariant derivative is not ensured
[3, 32]. A sufficient condition for the existence of a covariant derivative is given by

Theorem 1. Assume that there exists a bilinear operator B : C∞(S) × C∞(S) → C∞(S)
such that8

〈B(u, v),w〉 = 〈u, [v,w]〉 u, v,w ∈ C∞(S). (2.3)

Then there exists a unique Riemannian connection ∇ on D associated with the right-invariant
metric 〈·, ·〉, given by

(∇XY )η = [
X,Y − YRη

]
η

+ 1
2

([
XRη , Y

R
η

]
η
− B

(
XRη , Y

R
η

)
η
− B

(
YRη ,X

R
η

)
η

)
8 The operator B was introduced by Arnold [1] in the Lagrangian formulation of Euler’s equation of motion of a
perfect fluid in a bounded domain � ⊂ R

3. For Hilbert manifolds the existence of B is guaranteed by the Riesz
representation theorem [32].
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where for X ∈ X (D), we denote by XRη the right-invariant vector field whose value at η
is Xη and we extend B to a bilinear map on the family XR(D) of right-invariant vector
fields, B : XR(D) × XR(D) → XR(D) by B(Z,W)η = RηB(ZId,WId ) for η ∈ D and
Z,W ∈ XR(D).
In the proof of theorem 1 we will use.

Lemma 1. Consider on D a smooth right-invariant metric induced by an inner product 〈·, ·〉.
If X,Y,Z ∈ X (D) and Yη = 0 at some η ∈ D, then

LX〈Y,Z〉η = 〈[X,Y ], Z〉η.

Proof. Write the relation to be proved as

(LX〈Rh−1Yh,Rh−1Zh〉e)(η) = 〈Rη−1 [X,Y ]η, Rη−1Zη〉e
where Rϕ stands for right translation and e = Id . Being in the Lie algebra of D, we may
specify

(LX〈Rh−1Yh,Rh−1Zh〉e)(η) = 〈DX(Rh−1Y (h))(η), Rη−1Zη〉e
so that is suffices to show that DX(Rh−1Y (h))(η) = Rη−1 [X,Y ]η. This last relation is true
in a Hilbert space H as we can derive Rη−1 which belongs to the Hilbert space L(H,H) of
continuous linear operators from H to H (note that L(C∞(S), C∞(S)) is not a Fréchet space
[26]). Therefore the last equality holds in each Hk(S), k � 2, and we infer the result from
this if we take into account the definition of convergence on C∞(S). �

Proof of theorem 1. As the proof is rather elaborate, we proceed in several steps. We first
show that uniqueness is ensured. Assuming the existence of ∇, we derive its expression on
right-invariant vector fields and show that this completely determines ∇. Our last task will be
to show that the obtained explicit formula for ∇ satisfies properties (i)–(iv).

Step 1. We show the uniqueness of ∇ and, assuming existence, we derive its expression on
right-invariant vector fields.

Let us write (iv) for a cyclic permutation of X,Y,Z ∈ X (D),
LX〈Y,Z〉 = 〈∇XY,Z〉 + 〈∇XZ, Y 〉
LY 〈X,Z〉 = 〈∇YZ,X〉 + 〈∇YX,Z〉
LZ〈X,Y 〉 = 〈∇ZX, Y 〉 + 〈∇ZY,X〉.

Adding the first two relations and subtracting the third, the following identity can be derived:

2〈∇XY,Z〉 = 〈[X,Y ], Z〉 − 〈[Y,Z],X〉 + 〈[Z,X], Y 〉 − LX〈Y,Z〉 − LY 〈X,Z〉 + LZ〈X,Y 〉
(2.4)

if we take (ii) into account. Since the inner product 〈·, ·〉 is nondegenerate, the previous
formula shows the uniqueness of ∇.

Let XR(D) be the space of all right-invariant smooth vector fields on D. Due to the
right-invariance of the metric, 〈Y,Z〉 is constant for Y,Z ∈ XR(D) so that LX〈Y,Z〉 = 0 for
all X ∈ X (D). Therefore, (2.4) reduces to

2〈∇XY,Z〉 = 〈[X,Y ], Z〉 − 〈[Y,Z],X〉 + 〈[Z,X], Y 〉 X,Y,Z ∈ XR(D).
We evaluate this relation at e = Id to obtain by means of (2.3)

2〈Rη−1(∇XY )η, Ze〉e = 〈[X,Y ]e, Ze〉e − 〈[Y,Z]e, Xe〉e + 〈[Z,X]e, Ye〉e
= 〈[X,Y ]e, Ze〉e − 〈B(Xe, Ye), Ze〉e − 〈B(Ye,Xe), Ze〉e
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as Rη−1Xη = Xe by right-invariance and since the Lie bracket of two right-invariant vector
fields is a right-invariant vector field. We get

(∇XY )η = 1
2 ([X,Y ]η − RηB(Xe, Ye)− RηB(Ye,Xe)) η ∈ D (2.5)

which is the expression of ∇ on right-invariant vector fields.

Step 2. Assuming the existence of ∇ we derive an explicit formula for it.

IfX ∈ X (D), we denote byXRη the right-invariant vector field on D whose value at η ∈ D
is Xη. If ∇ exists, then

(∇XY )η = [
X,Y − YRη

]
η

+
(∇XRη YRη )

η
η ∈ D. (2.6)

Indeed, by (ii) ∇ must be torsion free so that(∇X (
Y − YRη

))
(η)− (∇(Y−YRη )X

)
(η) = [

X,Y − YRη
]
η

and (i) yields
(∇X(

Y − YRη
))
(η) = [

X,Y − YRη
]
η
. Combining this with (i) we obtain

(∇XY )η = [
X,Y − YRη

]
η

+
(∇XYRη )

η
= [

X,Y − YRη
]
η

+
(∇XRη YRη )

η
(2.7)

which is the only possible formula for ∇.

Step 3. We define ∇ by (2.7) and check that it satisfies all required properties (i)–(iv).

It is useful to write (2.7) in the more detailed form

(∇XY )η = [
X,Y − YRη

]
η

+ 1
2

([
XRη , Y

R
η

]
η
− B

(
XRη , Y

R
η

)
η
− B

(
YRη ,X

R
η

)
η

)
where we extended B to a bilinear map B : XR(D) × XR(D) → XR(D) by B(Z,Z′)η =
RηB(Ze, Z

′
e) for η ∈ D and Z,Z′ ∈ XR(D). Since the vector field

(
Y − YRη

)
is zero at η, we

have
[
X,Y − YRη

]
η

= [
XRη , Y − YRη

]
η

as one can see by going to local charts. We therefore
have a second equivalent explicit form of (2.7),

(∇XY )η = [
XRη , Y − YRη

]
η

+ 1
2

([
XRη , Y

R
η

]
η
− B

(
XRη , Y

R
η

)
η
− B

(
YRη ,X

R
η

)
η

)
.

Clearly, ∇ is R-bilinear. The above explicit form of (2.7) shows that (∇XY )η depends
only on the value Xη of X at η. Property (iii) can be easily checked as the expression([
XRη , Y

R
η

]
η
− B

(
XRη , Y

R
η

)
η
− B

(
YRη ,X

R
η

)
η

)
is tensorial.

To verify that ∇ is torsion free, note that the above two explicit forms of (2.7) yield
(∇XY )η = (∇XRη Y )

η
so that, by these formulae

(∇XY − ∇YX)η = (∇XRη Y − ∇YX
)
η

= [
XRη , Y − YRη

]
η
− [
Y,X − XRη

]
η

+
[
XRη , Y

R
η

]
η

which cancels to [X,Y ]η.
To complete the proof, we have to check that ∇ defined by (2.7) is compatible with the

metric. To prove (iv) at a given η ∈ D we have to show that

LX〈Y,Z〉η = 〈[
XRη , Y − YRη

]
, Z

〉
η

+
〈[
XRη ,Z − ZRη

]
, Y

〉
η

as the remaining parts cancel. Due to bilinearity, it will be enough to verify the above equality
for the triples

(
X,Y −YRη , Z

)
,
(
X,YRη , Z−ZRη

)
and

(
X,YRη , Z

R
η

)
. The first two triples satisfy

the equality in view of lemma 1 while for the third triple the verification is obvious as both
sides are zero.

Therefore we proved that there exists a unique Riemannian connection ∇ on D associated
with the right-invariant metric 〈·, ·〉. From its explicit form we see that ∇ maps right-invariant
vector fields onto right-invariant vector fields. �
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2.4. Derivative along a curve and parallelism

Let us now construct a derivation along curves. Let J ⊂ R be an open interval and consider
a C1-curve α : J → D. By a lift γ of α we mean a C1-curve γ : J → TD lying above α.
If Lift(α) is the set of lifts of α, we define the derivation Dαt : Lift(α) → Lift(α) along α in
local coordinates by

Dαt γ = γt −Q(αt ◦ α−1, γ ◦ α−1) ◦ α γ ∈ Lift(α) (2.8)

where the bilinear operatorQ : C∞(S)× C∞(S) → C∞(S) is defined by

Q(u, v) = 1
2 (uxv + uvx + B(u, v) + B(v, u)) u, v ∈ C∞(S).

If α is induced by a vector field, we recover the expression of the covariant derivative. Indeed,
let X,Y ∈ X (D) be such that γ (t) = Y (α(t)) on J and αt (t0) = X(α0), α0 = α(t0) for some
t0 ∈ J . IfXR0 , Y

R
0 are the right-invariant vector fields on D whose values at α0 ∈ D areX(α0),

respectively Y (α0), we have, cf step 3 in the proof of theorem 1, that

(∇XY )(α0) = [
XR0 , Y

]
(α0)− 1

2

([
XR0 , Y

R
0

]
(α0) + B

(
XR0 , Y

R
0

)
(α0) + B

(
YR0 ,X

R
0

)
(α0)

)
.

According to section 2.1, in local coordinates,[
XR0 , Y

R
0

]
(α0) = γ (t0) ·

([
X(α0) ◦ α−1

0

]
x
◦ α0

) −X(α0) ·
([
γ (t0) ◦ α−1

0

]
x
◦ α0

)
.

On the other hand, writing out the definition explicitly, we see that[
XR0 , Y

]
(α0) = γt (t0)− γ (t0) ·

([
X(α0) ◦ α−1

0

]
x
◦ α0

)
thusDαt γ (t0) = (∇XY )(α(t0)). Let us now prove

Lemma 2. Let J ⊂ R be an open interval and consider a C1-curve α : J → D. If
γ1, γ2 ∈ Lift(α), then

d

dt
〈γ1, γ2〉 = 〈

Dαt γ1, γ2
〉
+

〈
γ1,Dαt γ2

〉
t ∈ J. (2.9)

Proof. The method is quite similar to that we used in the case of vector fields. Let us fix
t0 ∈ J . First we establish, in the same way as in lemma 1, that

d

dt
〈γ1, γ2〉

∣∣∣
t=t0

=
〈(

d

dt
γ1

)
(t0), γ2(t0)

〉
if γ1(t0) = 0. (2.10)

Then we prove that (2.9) is satisfied at t = t0 by the three couples(
γ1 − γ R1 , γ2

) (
γ R1 , γ2 − γ R2

) (
γ R1 , γ

R
2

)
where γ Ri (t) = Rα(t)Rα(t0)−1γi(t0), t ∈ J, i = 1, 2.

Indeed, defining the right-invariant vector fields YRi whose values at α(t0) are γi(t0),
observe that γ Ri (t) = YRi (α(t)), t ∈ J, i = 1, 2. That (2.9) is true for the first two couples is
a direct consequence of (2.10). On the other hand, since γ Ri derive from the vector fields YRi ,
by the compatibility of the covariant derivative with the metric we have

LXR
〈
YR1 , Y

R
2

〉
α(t)

= 〈∇XRYR1 , Y R2 〉
α(t)

+
〈
YR1 ,∇XRYR2

〉
α(t)

= 〈
Dαt γ

R
1 (t), γ

R
2 (t)

〉
+

〈
γ R1 (t),Dαt γ

R
2 (t)

〉
where XR is the right-invariant vector field on D whose value at α(t0) is αt (t0). But

LXR
〈
YR1 , Y

R
2

〉
α(t0)

= d

dt

〈
γ R1 , γ

R
2

〉 ∣∣∣
t=t0

as one can check using the fact that XR has a flow, see the discussion of the Lie group
exponential map on D. Therefore the third couple satisfies (2.9) at t = t0 too. Adding up
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these three relations, we obtain (2.9) at t = t0. Due to the arbitrariness of t0 ∈ D, the proof is
complete. �

If ϕ : J → D is a C2-curve, we say that a lift γ : J → TD is ϕ-parallel if Dϕt γ ≡ 0 on
J . In local coordinates, denoting

ϕt ◦ ϕ−1 = u γ ◦ ϕ−1 = v

this is equivalent to requiring that v ∈ C1(J ;C∞(S)) is a solution of the equation

vt = 1
2 (vux − vxu + B(u, v) + B(v, u)). (2.11)

A C2-curve ϕ : J → D is called a geodesic if Dϕtϕt ≡ 0 on J . With u = ϕt ◦ ϕ−1 ∈ TIdD ≡
C∞(S) we can write the geodesic equation as

ut = B(u, u) t ∈ J. (2.12)

Both (2.11) and (2.12) are differential equations in the Fréchet space C∞(S). The classical
local existence theorem for differential equations with smooth right-hand side does not hold in
C∞(S) [26]. We adopt the following approach. We complete C∞(S) under the Hk(S)-norm
(k � 2), deal with the resulting Hilbert manifold Dk , and then show that the solutions of the
equation under study actually are C∞ if the data are smooth. More precisely, for k � 2, let

Dk = {η ∈ Hk(S), η is bijective, orientation preserving and η−1 ∈ Hk(S)}.
The Dk, k � 2, is only a topological group and is not a Lie group as the composition map

Dk × Dk → Dk (f, g) �→ f ◦ g
and the inverse map

Dk → Dk f �→ f−1

are merely continuous, not C∞. For ϕ ∈ Dk , right composition

Rϕ : Dk → Dk Rϕ(η) = η ◦ ϕ η ∈ Dk

is a C∞ map but left composition

Lϕ : Dk → Dk Lϕ(η) = ϕ ◦ η η ∈ Dk

is continuous without being locally Lipschitz. However, the composition regarded as a map
Dk+n × Dk → Dk and the group inverse regarded as a map Dk+n → Dk are both of class
Cn. Dk, k � 2, is a Hilbert manifold modelled on TIdDk ≡ Hk(S); see [23] for a detailed
treatment of these matters. In our approach, the study of the structure of all the Dk, k � 2,
with respect to a given right-invariant metric will enable us to obtain results for D as the
geodesic flow on Dk preserves D.

3. The L2 right-invariant metric

Since TIdD is a smooth function space, the most natural inner product to start with would be
the L2 inner product

〈u, v〉L2 =
∫

S

u(x)v(x) dx on TIdD ≡ C∞(S).

In the case of the smooth right-invariant metric obtained by right translation by means of (2.2),
it is easy to check that B(u, v) = −2u′v − uv′ for u, v ∈ C∞(S). The geodesic equation for
the L2 right-invariant metric is

ut + 3uux = 0 (3.1)
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where t �→ ϕ(t) is the geodesic curve starting at time t = 0 at the identity Id in the direction
u0 ∈ TIdD, u = ϕt ∈ Tϕ(t)D. Note that (3.1) is a differential equation inC∞(S). Equation (3.1)
is part of the system{

ϕt = u(t, ϕ)

ut + 3uux = 0
(3.2)

with initial data ϕ(0) = Id, u0 ∈ C∞(S).

3.1. Burgers equation

Equation (3.1) is the well-known inviscid Burgers equation [7]. Though rather simple, it is
a successful mathematical model of gas dynamics [4]. This partial differential equation was
investigated in great detail. If u0 ∈ Hk(S) with k � 2, then equation (3.1) with initial data
u(0, ·) = u0 has a unique solution u ∈ C([0, T );Hk(S)) ∩ C1([0, T );Hk−1(S)) for some
maximal time T > 0 [31]. Moreover, on [0, T ), u(t) depends continuously on the initial
data in the Hk(S)-norm, while Hölder continuity with any prescribed exponent generally
does not hold, see [30]. Equation (3.1) can be analysed by the method of characteristics. If
u0 ∈ Hk(S), k � 2, then the solution u ∈ C([0, T );Hk(S)) satisfies

u(t, x + 3t u0(x)) = u0(x) t ∈ [0, T ) x ∈ S. (3.3)

Using this, one can see9 that the maximal existence time is precisely

T = min
{x∈S:u′

0(x)<0}

{
1

−3u′
0(x)

}
> 0. (3.4)

Since u0 is periodic, we deduce that all solutions but the constant functions have a finite
life-span. The development of singularities is also well understood: if u0 ∈ Hk(S), k � 2, is
not constant, then

max
x∈S

|u(t, x)| = max
x∈S

|u0(x)| t ∈ [0, T )

while

min
x∈S

ux(t, x) → −∞ as t ↑ T < ∞.

Note that on [0, T ) we have u(t, ·) ∈ H 2(S) ⊂ C1(S). Relation (3.3) is useful in determining
the blow-up rate

lim
t↑T

(
(T − t)min

x∈S

{ux(t, x)}
) = − 1

3 .

3.2. Existence of geodesics

It is quite natural to view (3.1) as the geodesic equation for the right-invariant L2-metric on
Dk with k � 2. However, this needs further justification since, in contrast to the case of
D, we cannot start from the notion of covariant derivative to define the geodesics. Note that
the alleged covariant derivative given by theorem 1 is not well defined on Dk due to loss
of smoothness. We would also like to point out that if X ∈ X (Dk), k � 2, then the map
η �→X(η) ◦ η−1 is only continuous on Dk so that the L2 right-invariant metric on Dk is not
smooth whereas the L2 right-invariant metric on D is smooth. To fully justify why we are
entitled to call (3.1) the geodesic equation on Dk , we will show that it arises from the necessary
condition for a curve on Dk to be locally length minimizing.
9 For details we refer to [28].
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For each C1-curve γ : [a, b] → D we define its length by

l(γ ) =
∫ b

a

‖γt(t)‖γ (t) dt =
∫ b

a

〈γt ◦ γ−1, γt ◦ γ−1〉 1
2 dt .

We can extend the length to piecewise C1-paths on D by taking the sum of the lengths of
the C1-components of the curve. Since D is connected, cf section 2.1, any two points on D
can be joined by a piecewise C1-path. We say that a C1-path γ : [a, b] → D has a regular
parametrization if γt �= 0 at every t ∈ [a, b]. Any such curve can be reparametrized by arc
length [32], i.e. there is a new parametrizationϕ : [0, c] → D of the path such that ‖ϕt‖ϕ(t) = 1
on [0, c]. The action along a path γ : [a, b] → D is the quantity a(γ ) = 1

2

∫ b
a

‖γt‖2
ϕ(t) dt .

Unlike the length l(γ ), the action a(γ ) depends on the parametrization. If the curve is
parametrized by arc length, we have l(γ ) = 2a(γ ). This allows us to pass freely from one
notion to the other. Let us now find a necessary condition for a regularly parametrized path to
be the shortest path on D between its endpoints. In view of the previous comments, we can
assume the path to be parametrized by arc length, γ : [0, c] → D and γ is a critical point in
the space of paths for the action functional, i.e.

d

dε
a(γ + εη)

∣∣∣
ε=0

= 0

for every path η : [0, c] → D with endpoints at zero and such that γ + εη is a small variation
of γ on D. But

d

dε
a(γ + εη)

∣∣∣
ε=0

= d

dε

1

2

∫ c

0

∫
S

[(γt + εηt ) ◦ (γ + εη)−1]2 dx dt
∣∣∣
ε=0

=
∫ c

0

∫
S

(γt ◦ γ−1)

{
d

dε
[(γt + εηt ) ◦ (γ + εη)−1]

∣∣∣
ε=0

}
dx dt .

Note that
d

dε
[(γt + εηt ) ◦ (γ + εη)−1]

∣∣∣
ε=0

= ηt ◦ γ−1 + (γtx ◦ γ−1) · d

dε
(γ + εη)−1

∣∣∣
ε=0

= ηt ◦ γ−1 − (γtx ◦ γ−1)
η ◦ γ−1

γx ◦ γ−1

as differentiation with respect to ε in the relation (γ + εη) ◦ (γ + εη)−1 = Id leads to

γx ◦ (γ + εη)−1 · d

dε
(γ + εη)−1 + εηx ◦ (γ + εη)−1 · d

dε
(γ + εη)−1 + η ◦ (γ + εη)−1 = 0

and therefore
d

dε
(γ + εη)−1

∣∣∣
ε=0

= − η ◦ γ−1

γx ◦ γ−1
.

We infer that
d

dε
a(γ + εη)

∣∣∣
ε=0

=
∫ c

0

∫
S

(γt ◦ γ−1)[ηt ◦ γ−1 − (η ◦ γ−1)∂x(γt ◦ γ−1)] dx dt .

Denoting γt ◦ γ−1 = u, we find

d

dε
a(γ + εη)

∣∣∣
ε=0

=
∫ c

0

∫
S

u[ηt ◦ γ−1 − uxη ◦ γ−1] dx dt

=
∫ c

0

∫
S

u[∂t (η ◦ γ−1) + u∂x(η ◦ γ−1)− ux(η ◦ γ−1)] dx dt

since

∂t (η ◦ γ−1) = ηt ◦ γ−1 + ηx ◦ γ−1 · ∂t (γ−1) = ηt ◦ γ−1 − ηx ◦ γ−1 · γt ◦ γ
−1

γx ◦ γ−1
.
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Indeed, differentiating the relation γ ◦ γ−1 = Id with respect to time, we get γt ◦ γ−1 + γx ◦
γ−1 · ∂t (γ−1) = 0 which gives the desired expression for ∂t (γ−1). Integrating by parts with
respect to t and x in the above formula for the derivative of the action functional, we obtain

d

dε
a(γ + εη)

∣∣∣
ε=0

= −
∫ c

0

∫
S

(η ◦ γ−1)[ut + 3uux] dx dt .

This calculation can be performed on D as well as on Dk, k � 2, and yields the Euler–
Lagrange equation ut + 3uux = 0 where u = γt ◦ γ−1 and t �→ γ (t) ∈ D is the curve
(parametrized by arc length) yielding the critical point of the length functional to be minimized.
The variational formulation gives a meaning to the geodesic equation on Dk, k � 2. To
proceed, we shall need

Lemma 3. [6] Let F ∈ C([0, T );Hk(S)) with k � 2. Then the differential equation{
ϕt = F(t, ϕ)

ϕ(0) = Id

has a unique solution ϕ ∈ C1([0, T );Dk).

The considerations in section 3.1 show that for any u0 ∈ Hk(S), k � 2, the system
(3.2) defines a unique C1-curve t �→ ϕ(t) ∈ Dk on a maximal time interval [0, T ) with
T > 0 given by (3.4). Note that we obtained the geodesic equation (3.1)—a geodesic
for the L2 right-invariant metric being defined to be a C1-curve satisfying (3.1). The
discussion in section 2.4 would suggest defining geodesics as C2-curves t �→ ϕ(t) ∈ Dk

satisfying (3.1) whereas our approach yields only a C1-dependence on time. It is not
possible to require ϕ ∈ C2([0, T );Hk(S)) as this assumption would lead by (3.2) to
ϕtt = ut ◦ ϕ + u ◦ ϕ · ux ◦ ϕ = −2u ◦ ϕ · ux ◦ ϕ ∈ C([0, T );Hk(S)). Letting in this
relation t ↓ 0 we would obtain that u0 · u′

0 ∈ Hk(S) for all u0 ∈ Hk(S), a contradiction.
Inspecting the previous considerations it becomes clear that we proved

Proposition 1. For every u0 ∈ TIdDk ≡ Hk(S), k � 2, there exists a unique geodesic on Dk

starting at Id in the direction of u0. This geodesic is defined for some finite maximal time
T > 0 unless u0 is constant.

From the detailed discussion of equation (3.1) we know that if u0 ∈ C∞(S), then the
unique solution u of (3.1) with data u0 belongs to C1([0, T );D) with T given by (3.4). By a
recursive argument using (3.1) we deduce that u ∈ C∞([0, T );D). Applying lemma 3 for all
k � 2 we obtain again by a recursive argument that

Theorem 2. For every u0 ∈ TIdD ≡ C∞(S), there exists a unique geodesic ϕ ∈
C∞([0, T );D) starting at Id in the direction of u0. The only geodesic that can be continued
indefinitely in time is that in the constant direction.

For every u0 ∈ Hk(S), k � 2, we defined a geodesic curve ϕ ∈ C1([0, T ),Dk) starting
at Id . On the other hand, the method of characteristics also associates a C1-curve t �→ q(t)

on Dk starting at Id by

q(t, x) = x + 3t u0(x) t ∈ [0, T ) x ∈ S.

Generally the two curves do not coincide (if u0 is constant, we have the same curve). While
t �→ q(t) satisfies (3.3), note that

u(t, ϕ(t, x)) · ϕ2
x(t, x) = u0(x) t ∈ [0, T ) x ∈ S (3.5)
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as one can see differentiating both sides with respect to time10. Observe that the solution to
(3.1) is given by u = ϕt ◦ ϕ−1 = u0 ◦ q−1 up to the maximal existence time given by (3.4):
the geometric approach differs from the method of characteristics.

3.3. The exponential map

These results enable us to define the Riemannian exponential map exp of theL2 right-invariant
metric. Let ϕ(t; u0) be the geodesic starting at Id in the direction u0 on Dk, k � 2, or on D.
For later use, let us first observe that, using (3.2), it is easy to obtain

ϕ(t; su0) = ϕ(ts; u0) (3.6)

for t, s � 0 such that both geodesics are well defined. On the other hand, note that ‖u0‖Hk < 1
4

ensures that the maximal existence time of ϕ(t; u0) is strictly larger than 1. Indeed, by the
inequality

max
x∈S

|u′
0(x)|2 �

∫
S

(
(u′

0)
2 + (u′′

0)
2) dx � ‖u0‖2

Hk

we obtain that maxx∈S{−3u′
0(x)} � 3

4 so that the assertion follows from relation (3.4). For
‖u0‖Hk < 1

4 we define the Riemannian exponential map exp as the time one map of the
geodesic flow, i.e. exp(u0) = ϕ(1; u0).

For strong Riemannian manifolds, the Riemannian exponential map always defines charts
[32]. This is not the case for the (weak) L2 right-invariant metric.

Proposition 2. The Riemannian exponential map of theL2 right-invariant metric onDk, k � 2,
is not a C1 map from a neighbourhood of zero in TIdDk ≡ Hk(S) to Dk .

Proof. Assuming the contrary, we will reach a contradiction by showing that although the
derivative of exp is the identity at zero, it fails to be invertible at nearby points. This will prove
the assertion, for if exp were C1, the inverse function theorem would prevent this degeneracy.

We assume that exp is a C1 map.
Let t �→ tv be a curve in TIdDk . For t > 0 small enough, we have by (3.6) that

exp(tv) = ϕ(1; tv) = ϕ(t; v) so that

d

dt
exp(tv)

∣∣∣
t=0

= d

dt
ϕ(t; v)

∣∣∣
t=0

= v v ∈ TIdDk .

This shows that Dexp(0) is the identity.
We shall now compute the derivative of exp at a point v ∈ TIdDk near Id by considering

an infinitesimal changew of v. Denoting

ψ(t) = tDexp(tv) · w ∈ Hk(S) t ∈ [0, 1]

we will show that for t ∈ [0, 1] we have

ψ(t, x) =
∫ t

0

w(x)

ϕ2
x(s, x)

ds −
∫ t

0

2v(x)

ϕ3
x(s, x)

ψx(s, x) ds x ∈ S. (3.7)

From its definition we know that ψ(t, x) depends continuously on time while the Sobolev
imbeddingHk−1(S) ⊂ C(S) shows theC1-dependence on the spatial variable. Differentiating
the above equation with respect to time we obtain the linear partial differential equation

ψt(t, x) = w(x)

ϕ2
x(t, x)

− 2v(x)

ϕ3
x(t, x)

ψx(t, x) t ∈ [0, 1] x ∈ S. (3.8)

10 Relation (3.5) is an expression of the conservation of momentum: we refer to the end of section 4.2 for a detailed
discussion of this aspect in the context of the H 1 right-invariant metric, refraining from repeating the procedure here.
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In the special case v(x) = c > 0, x ∈ S, it is easy to see by (3.2) that ϕ(t, x) = x + ct and
(3.8) becomes

ψt = −2cψx +w t ∈ [0, 1] x ∈ S.

Since ψ(0, x) = 0, x ∈ S, we deduce that

ψ(t, x) = 1

2c

∫ x

x−2ct
w(y) dy x ∈ S

thus, if v(x) = c > 0, we have

(Dexp(v) ·w)(x) = 1

2c

∫ x

x−2c
w(y) dy x ∈ S. (3.9)

This relation shows that, under the assumption that exp is locally C1, the derivative Dexp of
the exponential map at vn(x) = 1

n
, x ∈ S, annihilates the functionswn(x) = sin(πnx), x ∈ S,

and is therefore not invertible. This yields the desired contradiction.
To complete the proof, we have to check (3.7).
Let ϕε be the geodesic on Dk starting at Id in the direction (v + εw). Using (3.2) and

(3.5) we deduce that for ε > 0 small enough,

ϕ(t, x) = x +
∫ t

0

v(x)

[ϕx(s, x)]2
ds t ∈ [0, 1] x ∈ S

ϕε(t, x) = x +
∫ t

0

v(x) + εw(x)[
ϕεx(s, x)

]2 ds t ∈ [0, 1] qx ∈ S.

For t ∈ [0, 1], x ∈ S, we obtain

ϕε(t, x)− ϕ(t, x)

ε
=

∫ t

0

w(x)[
ϕεx(s, x)

]2 ds

−
∫ t

0

v(x)
[
ϕεx(s, x) + ϕx(s, x)

]
[ϕx(s, x)]2

[
ϕεx(s, x)

]2

ϕεx(s, x)− ϕx(s, x)

ε
ds. (3.10)

We would like to let ε → 0 in (3.10) and in doing so, we seek to apply the Lebesgue
dominated convergence theorem.

For the pointwise convergence, by (3.6) we have

ϕε(t)− ϕ(t) = exp(t (v + εw))− exp(tv)

so that, 


lim
ε→0

ϕε(t, x)− ϕ(t, x)

ε
= ψ(t, x) uniformly on S

lim
ε→0

ϕεx(t, x)− ϕx(t, x)

ε
= ψx(t, x) uniformly on S

(3.11)

in view of the compact imbedding of H 2(S) in C1(S).
To obtain a uniform bound under the integral sign in (3.10), we proceed as follows. Fix

t ∈ [0, 1] and ε > 0 small. For ε ∈ (0, ε0) we define

F : [0, 1] → Hk(S) F (s) = exp(tv + εsw)− exp(tv)

ε
− sDexp(tv) · w.

By the mean-value theorem and the fact that by assumption exp is C1, we infer that

‖F(s)‖Hk = ‖F(s) − F(0)‖Hk � max
ξ∈[0,1]

‖F ′(ξ)‖Hk

= max
ξ∈[0,1]

‖Dexp(tv + εξw) · w −Dexp(tv) ·w‖Hk � M
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for some M > 0 that is independent of t ∈ [0, 1] and of ε ∈ (0, ε0). We deduce that for all
t ∈ [0, 1], ε ∈ (0, ε0),∥∥∥∥exp(tv + εtw)− exp(tv)

ε
− tDexp(tv) · w

∥∥∥∥
Hk

� M.

This relation yields

sup
t∈[0,1],x∈S

∥∥∥∥ϕεx(t, x)− ϕx(t, x)

ε
− ψx(t, x)

∥∥∥∥
Hk

� M ε ∈ (0, ε0).

Taking into account the previous relation and (3.11) while letting ε → 0 in (3.10) leads to

ψ(t, x) =
∫ t

0

w(x)

ϕ2
x(s, x)

ds −
∫ t

0

2v(x)

ϕ3
x(s, x)

ψx(s, x) ds t ∈ [0, 1] x ∈ S

in view of the Lebesgue dominated convergence theorem. The proof is complete. �
Let us now prove that the Riemannian exponential map for the (weak) L2 right-invariant

metric on D does not define charts.

Theorem 3. The Riemannian exponential map of the L2 right-invariant metric on D is not a
C1 diffeomorphism from a neighbourhood of zero in TIdD ≡ C∞(S) to D.

Proof. Assume exp is a local C1 diffeomorphism. Note that in the proof of proposition 2 we
computed directional derivatives. Take v,w ∈ C∞(S) and fix k � 2. The same arguments
show that Dexp(v) · w is given precisely by (3.9) if v(x) = c > 0, x ∈ S. As vn,wn
defined above happen to belong to C∞(S) with vn → 0 in C∞(S), we conclude thatDexp(vn)
annihilates wn and is therefore not invertible in any neighbourhood of 0 ∈ C∞(S). The
obtained contradiction completes the proof. �

3.4. Breakdown of the geodesic flow

We saw that most of the geodesics have a finite lifespan T < ∞ given by (3.4). Let us prove
that it is not possible to consider a weaker dependence on time of the geodesic that could
allow us to continue each geodesic past this time T < ∞. Take u0 = −sin(2πx), x ∈ [0, 1].
In view of (3.4), the maximal existence time of the corresponding solution u(t, x) to (3.1)
is T = 1

6π . Using (3.1) it is easy to see that odd initial data yield spatially odd solutions.
Differentiating (3.3) with respect to x, we get

ux(t, x − 3t sin(2πx)) = −2π cos(2πx)

1 − 6πt cos(2πx)
x ∈ [0, 1]

so that

min
x∈S

ux(t, x) = ux(t, 0) = − 2π

1 − 6πt
→ −∞ as t ↑ 1

6π
.

If ϕ(t) is the geodesic on D starting at Id in the direction u0, note that ϕt = u(t, ϕ) leads to
ϕtx = ux(t, ϕ) · ϕx . Therefore

ϕx(t, x) = exp

(∫ t

0
ux(s, ϕ(s, x)) ds

)
x ∈ [0, 1] t ∈

[
0,

1

6π

)
.

Evaluating at x = 0, we obtain

ϕx(t, 0) = (1 − 6πt)
1
3 t ∈

[
0,

1

6π

)
.

Indeed, u(t, 0) = 0 on
[
0, 1

6π

)
, ensured by spatial oddness, forces ϕ(t, 0) = 0 on

[
0, 1

6π

)
in

view of the ordinary differential equation d
dt ϕ(t, 0) = u(t, ϕ(t, 0)) with a locally Lipschitz

right-hand side. We see that ϕx(t, 0) → 0 as t ↑ 1
6π . Therefore, letting t ↑ T on the geodesic

t �→ ϕ(t), we do not obtain a C∞(S) diffeomorphism in the limit.
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4. The H1 right-invariant metric

The results of the previous section raise the question whether another right-invariant metric
could provide D with a nice local geometric structure.

We consider now the H 1 inner product on TIdD ≡ C∞(S):

〈u, v〉H 1 =
∫

S

(u(x)v(x) + u′(x)v′(x)) dx u, v ∈ C∞(S)

that is moved by right translation to define a smooth right-invariantmetric onD, see section 2.2.
A straightforward calculation yields

B(u, v) = − (
1 − ∂2

x

)−1 (
2vx

(
1 − ∂2

x

)
u + v

(
1 − ∂2

x

)
ux

)
u, v ∈ C∞(S)

so that theorem 1 ensures the existence of a Riemannian connection. The geodesic equation
for the H 1 right-invariant metric is

ut + uux + ∂x
(
1 − ∂2

x

)−1 (
u2 + 1

2u
2
x

) = 0 (4.1)

where t �→ ϕ(t, ·) is the geodesic curve starting at time t = 0 at the identity Id in the direction
u0 ∈ TIdD and u = ϕt ∈ Tϕ(t)D. We write this as the system{

ϕt = u(t, ϕ)

ut + uux + ∂x
(
1 − ∂2

x

)−1 (
u2 + 1

2u
2
x

) = 0
(4.2)

with initial data ϕ(0) = Id, u0 ∈ C∞(S).

4.1. The geodesic equation

Fokas and Fuchssteiner [24] obtained (4.1) as a bi-Hamiltonian abstract equation by the method
of recursion operators. In dimensionless spacetime variables (x, t), (4.1) arises in several
physical contexts. According to Camassa and Holm [8], it is a model for the unidirectional
propagation of waves under the influence of gravity at the free surface of a shallow layer of
water11 over a flat bottom [8] with u(t, x) representing the horizontal component of the velocity
or, equivalently, water’s free surface [9]. Equation (4.1) is a model for finite-length and small-
amplitude axial-radial deformation waves in cylindrical rods composed of a compressible
hyperelastic material [18] with u(t, x) representing the radial stretch relative to a pre-stressed
state. We would also like to point out that the viscous three-dimensional generalization of
(4.1) can be used as the basis for a turbulence closure model [10] and was considered and
studied in the theory of second-grade fluids [11] (examples of second-grade fluids include
molten asphalt, honey, paints; the relevance of such a fluid is that it can climb up a rod which
is rotating in an open vat [21]).

In the expression 1
2

∫
S

(
u2 + u2

x

)
dx, which is conserved along the flow of (4.1), the first

term represents the kinetic energy induced by the horizontal component of the velocity while
the second part stands for the kinetic energy due to vertical motion [27]. Since the propagation
is unidirectional, the transversal horizontal motion is neglected.

Let us discuss some aspects of the partial differential equation (4.1).
The methods of [13] show that for every u0 ∈ Hk(S), k � 2, there exists a maximal

time T = T (u0) > 0 such that (4.1) has a unique solution u ∈ C([0, T );Hk−1(S)) ∩
C1([0, T );Hk(S)). The solution depends continuously on the initial data in theHk(S) norm.
Note that the conservation of the energy functional 1

2

∫
S

(
u2 + u2

x

)
dx ensures that all solutions

to (4.1) remain uniformly bounded. Moreover, the only reason that this solution fails to exist
11 For an alternative derivation of this model in the context of water waves, we refer to [29].
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for all time is that the wave breaks [14]. This means that the solution remains bounded
while its slope becomes unbounded at a finite time T > 0. As an obvious consequence
we infer that the maximal existence time does not depend on the degree of smoothness of
u0 ∈ Hk(S), k � 2. Under some conditions the solution is global. Associate with each initial
profile u0 ∈ Hk(S), k � 2, the expression y0 := u0 − u0,xx . If y0 does not change sign
properly, the solution is global [16]. This condition is also necessary for global existence [34].
In the case of wave breaking, the rate of blow-up is given by [14]

lim
t↑T

(
inf
x∈S

{ux(t, x)}(T − t)

)
= −2.

For a large class of initial profiles it is also possible to determine the exact blow-up set. If
y0 ∈ H 1(S) is such that y0(x) � 0 for x ∈ [

0, 1
2

]
, y0 is odd with y0 ≡ 0 for |x| � x0 with

x0 ∈ (
0, 1

2

)
, y0 �≡ 0, then the blow-up set consists of the three points

{
0, 1

2 , 1
}
. More precisely,

we have

ux(t, 0) = ux
(
t, 1

2

) = ux(t, 1) → −∞ as t → T < ∞
while (recall that u remains uniformly bounded)

sup
t∈[0,T )

|ux(t, x)| < ∞ for every x ∈ (
0, 1

2

) ∪ (
1
2 , 1

)
.

An interesting aspect of equation (4.1) is its integrability in the sense of the infinite-
dimensional extension of Liouville’s theorem for classical completely integrable Hamiltonian
systems: there is a transformation which converts the equation into an infinite sequence of
linear ordinary differential equations which can be trivially integrated12. Equation (4.1) is
integrable provided the initial data u0 are regular and the associated y0 has no zeros—for
details we refer to [15]. Let us mention that (4.1) is a counterexample to a conjecture on the
complete integrability of nonlinear partial differential equations, the Painlevé test, see [25].

Equation (4.1) admits travelling wave solutions, i.e. solutions of the form u(t, x) =
φ(x − ct) which travel with fixed speed c. Further, these travelling wave solutions are
solitons13: two travelling waves reconstitute their shape and size after interacting with each
other, as discovered by Camassa and Holm [8]. For a discussion of the soliton interaction for
(1.2) we refer to [5]. The solitons are stable, the appropriate notion of stability being orbital
stability [17]. That is, a wave starting close to a solitary wave always remains close to some
translate of it at all later times. Thus the shape of the wave remains approximately the same
for all times.

The fact that equation (4.1) is formally a re-expression of the geodesic flow in the group
of compressible diffeomorphisms of the circle endowed with the H 1 right-invariant metric
was already noted in [36]. As we will see below, the rigorous study of the geodesic flow leads
to a proof of the least action principle.

It is quite natural to view (4.1) as the geodesic equation for the right-invariantH 1-metric
on the Hilbert manifolds Dk, k � 3. However, this needs further justification since, in contrast
to the case of D, we cannot start from the notion of covariant derivative to define the geodesics.
Just as in the situation encountered in section 3.2, the alleged covariant derivative given by
theorem 1 is not well defined on Dk due to loss of smoothness. We would also like to point
out that if X ∈ X (Dk), k � 3, then the map η �→ X(η) ◦ η−1 is only continuous on Dk so
that the H 1 right-invariant metric on Dk is not smooth whereas the H 1 right-invariant metric
on D is smooth. To fully justify why we are entitled to call (4.1) the geodesic equation on
Dk , we will show that it arises from the necessary condition for a regularly parametrized path
12 An introduction to the ideas of integrability, coupled with a description of some examples, is provided by [33].
13 A clear exposition of most of the essential features of soliton theory is given in [20]; see also the survey paper [39].
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to be locally the shortest path on Dk between its fixed endpoints. In view of the comments
on a similar issue made in section 3.2, we can assume the path to be parametrized by arc
length, γ : [0, c] → D, and the necessary condition for γ to be locally the shortest path on
Dk between its fixed endpoints is that γ is a critical point in the space of paths for the action
functional, i.e.

d

dε
a(γ + εη)

∣∣∣
ε=0

= 0

for every path η : [0, c] → Dk with endpoints at zero and such that γ + εη is a small variation
of γ on Dk . A lengthy calculation, similar to the one presented in section 3.2, shows that
d

dε
a(γ + εη)

∣∣∣
ε=0

= −
∫ c

0

∫
S

(η ◦ γ−1)[ut − utxx + 3uux − 2uxuxx − uuxxx] dx dt .

This yields the Euler–Lagrange equation

ut − utxx + 3uux − 2uxuxx − uuxxx = 0

where u = γt ◦ γ−1 and t �→ γ (t) ∈ Dk is the curve (parametrized by arc length) yielding the
critical point of the length functional to be minimized. Applying the operator

(
1 − ∂2

x

)−1
to

the above form of the Euler–Lagrange equation we obtain (4.1). The variational formulation
can therefore be used to give a meaning to (4.1) as the geodesic equation on Dk, k � 3.

From the stated analytical results on (4.1) and lemma 3 we draw some first conclusions
about the geodesic flow on Dk .

Proposition 3. For every u0 ∈ TIdDk ≡ Hk(S), k � 3, there exists a unique geodesic on Dk ,
starting at Id in the direction of u0. Certain geodesics are defined for some finite maximal
time T > 0 while others can be continued indefinitely in time.

In the above result, a geodesic is a solution to (4.1) with a C1-dependence on time,
as ensured by lemma 3. As a by-product of proposition 4 below we will see that the time
dependence of the geodesic is actuallyC2. Note the contrast to the case of theL2 right-invariant
metric on Dk where the dependence cannot generally beC2 in view of the comments preceding
proposition 1.

4.2. The exponential map

We define now the Riemannian exponential map exp of theH 1 right-invariant metric and study
some of its properties. If ϕ(t; u0) is the geodesic on D or on Dk, k � 3, starting at Id in the
direction u0, note that

ϕ(t; su0) = ϕ(ts; u0) (4.3)

for t, s � 0 such that both sides are well defined. The continuous dependence on initial data
of the solutions to (4.1) and lemma 3 show that there is some δ > 0 so that all geodesics
ϕ(t; u0) are defined on the same time interval [0, T ] with T > 0, provided ‖u0‖H 2 < δ. For
‖u0‖Hk < 2δ

T
, we define exp(u0) = ϕ(1; u0). In contrast to the case of the L2 right-invariant

metric, we have

Proposition 4. The Riemannian exponential map of the H 1 right-invariant metric on
Dk, k � 3, is a C1 local diffeomorphism from a neighbourhood of zero on TIdDk to a
neighbourhood of Id on Dk .

Proof. We recast (4.2) as a differential system{
ϕt = v

vt = Pϕ(v)
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where v = u(t, ϕ) and the operator Pϕ is given by

Pϕ(v) = −
{
∂x

(
1 − ∂2

x

)−1 (
(v ◦ ϕ−1)2 + 1

2 (v ◦ ϕ−1)2x
)} ◦ ϕ.

Note that Pϕ is a composition of the two operators

Dϕ = Rϕ ◦ ∂x ◦ Rϕ−1 Qϕ = Rϕ ◦ (
1 − ∂2

x

)−1 ◦ Rϕ−1

with

Eϕ(w) = −Rϕ ◦ (
w2 + 1

2w
2
x

) ◦ Rϕ−1

i.e.Pϕ(v) = (Dϕ◦Qϕ◦Eϕ)(v) for v ∈ Hk(S). We will prove that the map (ϕ, v) �→ (v, Pϕ(v))

isC1 from a small neighbourhoodof (Id, 0) ∈ Dk×Hk(S) toHk(S)×Hk(S). The theorem on
the dependence on initial data for solutions of differential equations in Banach spaces (see [32])
ensures then that exp is of class C1. Observe that Dexp0 is the identity. Indeed, let t �→ tv be
a curve in TIdDk . For t > 0 small enough, we have by (4.3) that exp(tv) = ϕ(1; tv) = ϕ(t; v)
so that

d

dt
exp(tv)

∣∣∣
t=0

= d

dt
ϕ(t; v)

∣∣∣
t=0

= v v ∈ TIdDk.

This shows that Dexp0 is the identity. Therefore, if the map (ϕ, v) �→ (v, Pϕ(v)) is locally
C1, the assertion of proposition 4 follows from the inverse function theorem.

To complete the proof, let us show that (ϕ, v) �→ (v, Pϕ(v)) is C1 from a small
neighbourhood of (Id, 0) ∈ Dk ×Hk(S) to Hk(S)×Hk(S).

Note that the map

(ϕ, v) �→ (ϕ,Eϕ(v)) is C1 from Dk ×Hk(S) to Dk ×Hk−1(S)

on a small neighbourhood of (Id, 0), while

(ϕ,w) �→ (ϕ,Dϕ(w)) is C1 from Dk ×Hk+1(S) to Dk ×Hk(S)

on a small neighbourhood of (Id, 0), as one can see by explicit calculations. If we show that
on a small neighbourhood of (Id, 0) ∈ Dk ×Hk−1(S),

(ϕ,w) �→ (ϕ,Qϕ(w)) is C1 to Dk ×Hk+1(S) (4.4)

the proof is complete. Indeed, combining the previous three assertions we infer that the map
(ϕ, v) �→ Pϕ(v) is C1 from a small neighbourhood of (Id, 0) ∈ Dk × Hk(S) to Hk(S).
Clearly, the map (ϕ, v) �→ (v, Pϕ(v)) will be then C1 from a small neighbourhood of
(Id, 0) ∈ Dk ×Hk(S) to Hk(S)×Hk(S) and we are done.

The inverse of the map in (4.4) is the map S given by

(ϕ,w) �→ (
ϕ,

[
Rϕ ◦ (

1 − ∂2
x

) ◦ Rϕ−1

]
(w)

)
.

By explicit calculation (see below) it is easy to see that S is of class C1 from Dk × Hk+1(S)

to Dk × Hk−1(S). Therefore, to conclude that (4.4) holds, in view of the inverse function
theorem, it will be enough to check that the Fréchet differential of S at (Id, 0) is invertible.
The C1 regularity of S ensures that the Fréchet differential can be computed by calculating
directional derivatives (it is actually the other way around that we showed S to beC1). Clearly,
considering partial derivativesDi, i = 1, 2, of the components Si, i = 1, 2, we have

D1S1 = Id D2S1 = 0

while
d

dε
S2(ϕ + εψ,w)

∣∣∣∣
ε=0

= d

dε

{((
1 − ∂2

x

)
[w ◦ (ϕ + εψ)−1]

) ◦ (ϕ + εψ)
}
ε=0

= d

dε

{
w −wxx

1

(ϕx + εψx)2
+ wx

ϕxx + εψxx
(ϕx + εψx)3

}
ε=0

= 2wxxψx
ϕ3
x

+
wxψxx

ϕ3
x

− 3ψxϕxxwx
ϕ4
x

.
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On the other hand
d

dε
S2(ϕ,w + εz)

∣∣∣∣
ε=0

= d

dε

{
(w + εz)− (wxx + εzxx)

1

ϕ2
x

+ (wx + εzx)
ϕxx

ϕ3
x

}
ε=0

= z− zxx
1

ϕ2
x

+ zx
ϕxx

ϕ3
x

.

We deduce that

DS(Id,0) =
(
Id 0
0 1 − ∂2

x

)
∈ Isom(Dk ×Hk+1(S),Dk ×Hk−1(S))

and the proof is complete. �

In order to use the geodesic flow on the Hilbert manifoldsDk, k � 3, to obtain information
about the geodesic flow on D with the H 1 right-invariant metric, it is necessary to investigate
further aspects.

Lemma 4. Let t �→ ϕ(t) be the geodesic on Dk, k � 3, issuing from the identity in the
direction of u0 ∈ Hk(S) and defined for some maximal time T > 0. Then ϕ ∈ C2([0, T );Dk).
If u0 �∈ Hk+1(S), for all times t ∈ (0, T ) we have ϕ(t) �∈ Hk+1(S).

Proof. By proposition 4 we know that there exists a unique geodesic ϕ on Dk . The
C2-dependence on time of the geodesic follows from the recasting of (4.2) as a differential
system with a C1 right-hand side, cf the proof of proposition 4.

If u ∈ C1([0, T );Hk−1(S)) ∩ C([0, T );Hk(S)) is the solution of (4.1) with initial data
u0, let m = u− uxx . Using (4.1), it is easy to check (differentiating with respect to time) that
the following identity holds14:

m(t, ϕ(t, x)) · ϕ2
x(t, x) = m0(x) t ∈ [0, T ).

Using the previous identity and (4.2), a straightforward calculation shows that

d

dt

ϕxx

ϕx
= u ◦ ϕ · ϕx − m0

ϕx
t ∈ (0, T ).

Hence
ϕxx(t)

ϕx(t)
=

∫ t

0
u(s, ·) ◦ ϕ(s) · ϕx(s) ds −m0

∫ t

0

1

ϕx(s)
ds t ∈ [0, T ). (4.5)

Assume now that for some u0 �∈ Hk+1(S) we have ϕ(t) ∈ Hk+1(S) at some time t ∈ (0, T ).
Observe now that u ◦ ϕ ∈ C([0, t];Hk(S)) and 1

ϕx
∈ C([0, t];Hk−1(S)). Therefore, relation

(4.5) would forcem0 ∈ Hk−1(S), that is, u0 ∈ Hk+1(S). The obtained contradiction completes
the proof. �

We are now in a position to prove the following result.

Theorem 4. Let u0 ∈ TIdD ≡ C∞(S). There exists a unique geodesic ϕ ∈ C2([0, T );D)
starting at Id in the direction u0; the geodesic is defined for all times if and only if (u0 − u′′

0)

does not change sign properly.

Proof. Fix k � 3. In view of lemma 4, there exists a unique geodesic ϕ ∈ C2([0, T );Dk).
The assertion about T and the fact that ϕ ∈ D are consequences of the properties of (4.1)—the
fact that a singularity can arise in a solution only in the form of wave breaking allows us to
deduce that if u0 ∈ C∞(S), then the unique solution of (4.1) with data u0 is smooth on its
14 Following the proof of theorem 5 there is a discussion of the origins of this identity.
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maximal interval of existence. Also, since ϕ ∈ C2([0, T );Dk) for all k � 2, we see that
ϕ ∈ C2([0, T );D), due to the way differentiation and convergence are defined on C∞(S).

�

Let us now analyse whether the exp is a local C1 diffeomorphism for D. We would like
to point out that, unlike the case of the Hilbert manifolds Dk, k � 3, we cannot apply the
inverse function theorem as we deal with a Fréchet manifold. Even under the assumption that
P : U ⊂ F → V ⊂ G defines a smooth map between open sets in Fréchet spaces such that
for every f ∈ U the derivative DP(f ) is an invertible linear map of F to G with a smooth
inverse (DP)−1 : U ×G ⊂ F ×G → F (we avoid spaces of linear maps), local invertibility
of P is not ensured, see [26], p 125. The use of the Nash–Moser theorem would require
special properties of the maps under discussion [26]. It is at this point that the use of the
information on the geodesic flow of Dk will yield a relatively simple proof of the following
result that marks the striking difference between the L2 and H 1 right-invariant metrics on D,
see theorem 3.

Theorem 5. The Riemannian exponential map of the H 1 right-invariant metric on D is a
C1 diffeomorphism from a neighbourhood of zero in TIdD ≡ C∞(S) to a neighbourhood of
Id on D.

Proof. From proposition 4 we know that exp is a C1 diffeomorphism from an open
neighbourhoodU3 of 0 ∈ H 3(S) to an open neighbourhood V3 of Id on D3; we can take U3

such that at every point of U3, the differential of exp is a bijection of H 3(S). Observe that
U = U3 ∩C∞(S) and V = V3 ∩C∞(S) are open neighbourhoods of 0 ∈ C∞(S), respectively
Id ∈ D. Theorem 4 ensures that exp(U) ⊂ V . On the other hand, we know from lemma
4 that if exp(u0) ∈ V for some u0 ∈ U3, then necessarily u0 ∈ U . Therefore exp is a local
bijection from U to V .

We will prove now that exp is a C1 diffeomorphism from U to V . Recall that convergence
in C∞(S) means convergence in all Hm(S) spaces for all m large enough.

Let u0 ∈ U . The proof of proposition 4 shows that exp is a C1-map on every
U3 ∩ Hk(S), k � 3, so that Dexpu0

is a bounded linear operator from Hk(S) to Hk(S).
We will prove that Dexpu0

is a bijection from Hk(S) to Hk(S) for all k � 3. Then, in
view of the inverse function theorem, both exp and its inverse are C1-maps on small Hk(S)-
neighbourhoods of u0 ∈ U , respectively, exp(u0) ∈ V . As k � 3 is arbitrary, we would infer
that exp is a C1 diffeomorphism from U to V .

To prove the last step, we use an inductive argument. To start with, Dexpu0
is a bijection

fromH 3(S) to H 3(S) as u0 ∈ U3. Fix k � 3, assume that for j = 3, . . . , k the mapDexpu0
is

a bijection from Hj(S) to Hj(S) and let us show that Dexpu0
is a bijection from Hk+1(S) to

Hk+1(S). Clearly,Dexpu0
is injective as a bounded linear map fromHk+1(S) to Hk+1(S) since

its extension toHk(S) is injective. To show that it is surjective, it suffices to prove that there is
no v ∈ Hk(S), v �∈ Hk+1(S), with Dexpu0

(v) ∈ Hk+1. Indeed, Dexpu0
(H k+1(S)) ⊂ Hk+1(S)

by the fact that exp is a C1-map on U3 ∩ Hk+1(S), while Dexpu0
(H k(S)) = Hk(S) by the

inductive assumption. If v ∈ Hk(S), v �∈ Hk+1(S), is such that Dexpu0
(v) ∈ Hk+1, for

ε > 0 small enough let ϕε(t) be the geodesic on Dk(S) from Id in the direction u0 + εv.
If uε ∈ C1([0, T ε);Hk−1(S)) ∩ C([0, T ε);Hk(S)) is the solution of (4.1) with initial data
u0 + εv, the proof of proposition 4 ensures that the map (ϕε(t), uε(t)) ∈ Dk × Hk(S) has a
C1-dependence on ε and t ∈ [0, 1]. From (4.5) we obtain

ϕεxx(1)

ϕεx(1)
=

∫ 1

0
uε(t, ·) ◦ ϕε(t) · ϕεx(t) dt − (u0 − u0,xx + εv − εvxx)

∫ 1

0

1

ϕεx(t)
dt .
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Multiplying both sides with ϕεx(1) and differentiating afterwards with respect to ε as the
derivative of an integral depending on a parameter in Banach spaces [19], a calculation shows
that

Dexpu0
(v) = d

dε
ϕε(1)

∣∣∣∣
ε=0

∈ Hk+1(S)

is possible only if15 we have (v−vxx) ∈ Hk−1(S), i.e. v ∈ Hk+1(S). The obtained contradiction
permits us to conclude. �

We would like to comment on the relation (∗) that plays a crucial role in the approach.
For finite-dimensional Lie groups the geodesic flow of a one-sided invariant metric has as a
remarkable conservation law the angular momentum [2]. This, in view of Noether’s theorem,
is a consequence of the invariance of the metric by the action of the group on itself. The same
conclusion can be drawn by formally carrying over the reasoning to infinite-dimensional Lie
groups [3]. In the present case, the formal conclusion can be justified rigorously: relation (∗)
is an expression of the conservation of momentum. More precisely, any v ∈ C∞(S) ≡ TIdD
defines a one-parameter group of diffeomorphismshs : D → D, hs (ϕ) = ϕ ◦expL(sv), where
expL is the Lie-group exponential map, cf section 2.1. Since the metric is by construction
invariant under the action of hs , Noether’s theorem ensures that

∂L

∂ϕt
(ϕ, ϕt )

[
dhs(ϕ)

ds

∣∣∣∣
s=0

]
is preserved along the geodesic curve t �→ ϕ(t) with ϕ(0) = Id and ϕt(0) = u0 ∈ TIdD; here
L : TD → R is the right-invariant metric. We compute

dhs(ϕ)

ds

∣∣∣∣
s=0

= ϕx · v ∂L

∂v
(ϕ, v)[w] = 2〈v ◦ ϕ−1, w ◦ ϕ−1〉

obtaining that

〈ϕt ◦ ϕ−1, ϕx ◦ ϕ−1 · v ◦ ϕ−1〉 = 〈u0, v〉 v ∈ C∞(S).

Using the explicit form of our metric, and observing that 〈f, g〉H 1 = 〈f −fxx, g〉L2 , the above
relation takes the form∫

S

(u− uxx) · ϕx ◦ ϕ−1 · v ◦ ϕ−1 dx =
∫

S

(u0 − u0,xx) · v dx

where, as before, u = ϕt ◦ ϕ−1. Changing variables in the first integral, we obtain∫
S

(u− uxx) ◦ ϕ · ϕ2
x · v dx =

∫
S

(u0 − u0,xx ) · v dx v ∈ C∞(S)

and (∗) is now plain16.

4.3. Length-minimizing property

We would now like to prove the minimizing property of the geodesics on D endowed with the
H 1 right-invariant metric. For this we first consider some preliminary results.

The parallel transport of a vector V0 tangent to a C2-curve α : J → D at α(0) = α0,
along the curve α is defined as a curve γ ∈ Lift(α) with γ (0) = V0 and such that Dαt γ ≡ 0
on J . Let us prove
15 The point is that in this calculation we have terms that will clearly belong to Hk−1(S) and an additional term
involving (v− vxx)multiplied with the Hk−1(S)-function ϕx(1) ·

∫ 1
0

1
ϕx (t)

dt , where ϕ(t) is the geodesic issuing from
Id in the direction u0. The factor of (v − vxx) has no zeros.
16 At this point it becomes clear that relation (3.5), playing a crucial role in section 3, can be justified analogously.
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Proposition 5. Let α : J → D be aC2 curve defined on some open interval J ⊂ R containing
zero. Given V0 ∈ Tα0D, α0 = α(0) ∈ D, there exists a unique lift γ : J → TD which is
α-parallel and such that γ (0) = V0. Furthermore, parallel transport is a metric isomorphism:
if γ1, γ2 are the unique α-parallel lifts of α with γi(0) = Vi ∈ Tα0D, i = 1, 2, then

〈γ1(t), γ2(t)〉 = 〈V1, V2〉 t ∈ J.

Proof. Using the exact expression we have for B in (2.11), after some manipulations we see
that the equation of parallel transport is

vt − uvx − ∂x
(
1 − ∂2

x

)−1 (
uv + 1

2uxvx
) = 0 (4.6)

with the notation from section 2.4. It is useful to observe that for a fixed u ∈ C1(J ;D), the
map

v �→ ∂x
(
1 − ∂2

x

)−1 (
uv + 1

2uxvx
)

is a bounded linear operator from Hk(S) to Hk(S), k � 3. Viewing (4.6) as linear
hyperbolic evolution equation in v with fixed u ∈ C1(J ;D), it is known (see [31]) that,
given V0 ∈ Hk(S), k � 3, there exists a unique solution

v ∈ C(J ;Hk(S)) ∩ C1(J ;Hk−1(S))

of (4.6) with initial data v(0) = V0. Taking into account the definition of differentiability of
C∞(S), letting k ↑ ∞, we infer that, given V0 ◦ α−1

0 ∈ TIdD ≡ C∞(S), there exists a unique
solution v ∈ C1(J ;D) to (4.6) with v(0) = V0 ◦ α−1

0 .
From (2.9) we deduce that 〈γ1(t), γ2(t)〉 is constant for any α-parallel lifts, whence the

second assertion follows. �

Let W,U be open neighbourhoods of 0 ∈ C∞(S), respectively of Id ∈ D, such that the
Riemannian exponential map exp of theH 1 right-invariant metric onD is aC1 diffeomorphism
from W onto U , cf theorem 5. Note that the map

G : D × W → D × D (η, u) �→ (η,Rηexp(u))

is a C1 diffeomorphism onto its image. We now define polar coordinates around η ∈ D. Let
U(η) = RηU = Rηexp(W). If ϕ ∈ U(η)− {η}, then ϕ = exp(v) ◦ η for some v ∈ W . We can
write v = rw, where 〈w,w〉 = 1 and r ∈ R+; (r,w) are the polar coordinates of ϕ ∈ U(η).

If J1, J2 ⊂ R are open intervals and σ : J1 × J2 → D is a map such that ∂2σ
∂r2 and ∂2σ

∂r∂t

are continuous, then for every fixed t ∈ J2 we obtain a curve σ(·, t) : J1 → D. We denote by
∂1σ the partial derivative with respect to r and define similarly ∂2σ . Note that for each t ∈ J2,
the curves r �→ ∂1σ(r, t) and r �→ ∂2σ(r, t) are lifts of r �→ σ(r, t). Generally, if γ is a lift
of r �→ σ(r, t), we may apply the covariant derivative with respect to functions of the first
variable r, (

D∂1σ γ
)
(r) = (D1γ )(r, t).

We define D2γ similarly. The next lemma is the analogue of the commutator rule of partial
derivatives in the context of covariant derivatives.

Lemma 5. Let σ : J1 × J2 → D (J1, J2 ⊂ R are open intervals) be such that ∂1∂2σ and
∂2∂1σ exist and are continuous. Then

D1∂2σ = D2∂1σ (4.7)

∂2〈∂1σ, ∂1σ 〉 = 2〈D1∂2σ, ∂1σ 〉. (4.8)
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Proof. In a local chart we have by (2.8) that

D1∂2σ = ∂1∂2σ −Q(∂1σ, ∂2σ) = D2∂1σ

as Q is symmetric. This proves (4.7).
On the other hand, from lemma 2,

∂2〈∂1σ, ∂1σ 〉 = 2〈D2∂1σ, , ∂1σ 〉.
Using (4.7) we obtain relation (4.8). �

Lemma 6. Let γ : [a, b] → U(η)−{η} be a piecewiseC1-curve. Then the length of the curve
is estimated by

l(γ ) � |r(b)− r(a)|
where (r(t), w(t)) are the polar coordinates of γ (t). Equality holds if and only if the function
t �→ r(t) is monotone and the map t �→ w(t) ∈ W is constant.

Proof. Breaking γ up into pieces that are C1, we may assume without loss of generality that
γ itself isC1. Also, taking into account the right-invariance of the metric, we may set η = Id .
The vector r(t)w(t) is obtained in a chart by the inversion of exp followed by a projection so
that the functions t �→ r(t) and t �→ w(t) are C1.

Let σ(r, t) = exp(rw(t)) and γ (t) = σ(r(t), t), where (r(t), w(t)) are the polar
coordinates of γ (t) in U . In our argumentation, we will need ∂2σ

∂r2 ,
∂2σ
∂r∂t

and ∂2σ
∂t∂r

to be
continuous17. To prove that this holds, we first fix k � 3, show that the hypothesis is fulfilled
in the Hk(S)-setting and then let k ↑ ∞. If ϕ(s; z) is the geodesic on Dk starting at Id in the
direction z ∈ Hk(S), observe that σ(r, t) = ϕ(r;w(t)) in view of (4.3). From the proof of
proposition 4 we know that ϕ(s; z) has aC2-dependence on s and (ϕ, ϕs) has aC1-dependence
on z. This implies at once the continuity of ∂2σ

∂r2 and ∂2σ
∂t∂r

in the Hk(S)-setting. Furthermore,
using the formula for the derivative of a Banach-valued integral depending on a parameter
[19], in view of

ϕ(s; z) = Id +
∫ s

0

∂ϕ

∂s
(ξ; z) dξ in Hk(S)

we have

∂ϕ

∂z
(s, z) =

∫ s

0

∂2ϕ

∂z∂s
(ξ; z) dξ in L(H k(S),H k(S))

thus ∂2ϕ

∂z∂s
= ∂2ϕ

∂s∂z
. As t �→ w(t) ∈ Hk(S) is a C1-map, we obtain that ∂2σ

∂r∂t
is continuous in the

Hk(S)-setting. According to the previous comments, this intermediate step is now justified.
We proceed with the obvious relation

γ ′(t) = ∂σ

∂r
· r ′(t) +

∂σ

∂t
t ∈ J. (4.9)

On the other hand, note that r �→ σ(r, t) is a geodesic so that by proposition 5 we obtain〈
∂σ

∂r
,
∂σ

∂r

〉
= 〈w(t),w(t)〉 ≡ 1. (4.10)

We will now show that〈
∂σ

∂r
,
∂σ

∂t

〉
≡ 0. (4.11)

17 We only need the continuity of ∂σ
∂t

and not even the existence of ∂2σ
∂t2

.
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Indeed, observe that because r �→ σ(r, t) is a geodesic, (D1
∂σ
∂r
) = 0. From (4.8) and (4.10)

we obtain that 〈
D1
∂σ

∂t
,
∂σ

∂r

〉
= 1

2
∂t

〈
∂σ

∂r
,
∂σ

∂r

〉
≡ 0.

Thus, in view of lemma 2,

∂r

〈
∂σ

∂r
,
∂σ

∂t

〉
=

〈
D1
∂σ

∂r
,
∂σ

∂t

〉
+

〈
∂σ

∂r
,D1

∂σ

∂t

〉
≡ 0.

Therefore 〈
∂σ

∂r
,
∂σ

∂t

〉
(r, t) =

〈
∂σ

∂r
,
∂σ

∂t

〉
(0, t).

But σ(0, t) = Id thus ∂σ
∂r
(0, t) = 0 and (4.11) follows at once.

Combining (4.9)–(4.11), we get

‖γ ′(t)‖2 = |r ′(t)|2 +

∥∥∥∥∂σ∂t
∥∥∥∥

2

� |r ′(t)|2 t ∈ [a, b]

so that

l(γ ) �
∫ b

a

|r ′(t)| dt � |r(b)− r(a)|.
It is also immediate to infer from the above the characterization of the situation when equality
holds. Indeed,

∥∥ ∂σ
∂t

∥∥ ≡ 0 forces w′(t) = 0 since Dexprw(t) is a bijection if viewed as a linear
map from H 3(S) to H 3(S). �

Let us now prove

Theorem 6. If η, ϕ ∈ D are close enough, more precisely, if ϕ ◦ η−1 ∈ U , then η and ϕ can
be joined by a unique geodesic in U(η). This unique geodesic is length minimizing among all
piecewise C1-curves joining η to ϕ on D.

Proof. The first assertion is a consequence of theorem 5. Indeed, if v = exp−1(ϕ ◦ η−1), then
α(t) = exp(tv) ◦ η is the unique geodesic joining η to ϕ in U(η).

To prove the second statement, let ϕ ◦ η−1 = exp(rw) with ‖w‖ = 1 and choose some
ε ∈ (0, r). If γ is any piecewise C1-curve joining η to ϕ on D, then γ contains an arc of curve
γ ∗ such that, after reparametrization,

‖exp−1(γ ∗(0))‖ = ε ‖exp−1(γ ∗(1))‖ = r

and

ε � ‖exp−1(γ ∗(t))‖ � r t ∈ [0, 1].

From lemma 6 we deduce that l(γ ∗) � r − ε, thus l(γ ) � l(γ ∗) � r − ε. By the arbitrariness
of ε > 0 we infer that l(γ ) � r . But lemma 6 shows that l(α) = r and the minimum is
attained if and only if the curve is a reparametrization of a geodesic. The proof is complete.

�

We showed that a geodesic is locally the shortest path between two nearby points of
D. The geometric analysis provided a rather simple solution to the corresponding variational
problem on D. The discussion in the introduction shows that the least action principle holds,
the physical interpretation being that a configuration of the system can be transformed to
any nearby configuration by a unique flow of (1.2). Of all possible paths joining these two
configurations, the system selects that of minimal action.
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4.4. Breakdown of the geodesic flow

In special directions, the breakdown of the geodesic can be better understood. Let us associate
with each solution of (4.1) the function m = u − uxx , representing the momentum in the
physical derivation of the equation [9]. If t �→ ϕ(t) ∈ D is the geodesic starting at Id in the
direction u0 ∈ C∞(S), defined for some maximal time T > 0, recall that

m(t, ϕ(t, x)) · ϕ2
x(t, x) = m0(x) t ∈ [0, T ) x ∈ S (4.12)

cf the proof of lemma 4. We have

Proposition 6. Assume u0 ∈ C∞(S), u0 �≡ 0, is odd and such that the corresponding m0

satisfies m0(x) = 0 for all x ∈ [−x0, x0] for some x0 ∈ (
0, 1

2

)
with m0(x) � 0 for x ∈ [

0, 1
2

]
.

Then the geodesic in D issuing from Id in the direction u0 breaks down in finite time T < ∞.
In the limit t ↑ T , the diffeomorphisms ϕ(t, x) on this geodesic flatten out.

Proof. Let T > 0 be the maximal existence time of the solution to (4.1) with initial data u0.
The special assumptions ensure that T < ∞, the blow-up set consists precisely of the three
points

{
0, 1

2 , 1
} ∈ [0, 1] ≡ S,

ux(t, 0) = ux
(
t, 1

2

) = ux(t, 1) → −∞ as t → T < ∞
while u remains uniformly bounded, see the discussion in section 4.1.

Since a spatially odd solution to (4.1) remains spatially odd (see [13]) on the time-interval
[0, T ),m remains spatially odd on [0, T ). Relation (4.12) proves not only that m(t, x) is odd
in x but also that it remains nonpositive for x ∈ [

0, 1
2

]
as long as t ∈ [0, T ).

Setting x = 0 in ϕt = u(t, ϕ) we see that ϕ(t, 0) = 0 as t ∈ [0, T ) by the uniqueness
theorem for ODEs with a locally Lipschitz right-hand side.

Since ϕ(t, 0) = 0 for t ∈ [0, T ) and ϕ(t, ·) is orientation preserving, we have that
ϕ(t, x) > 0 for (t, x) ∈ [0, T ) × (

0, 1
2

)
. On the other hand, m(t, x) � 0 on

[
0, 1

2

]
and

u(t, 0) = u
(
t, 1

2

) = 0 on [0, T ) by the oddness and the periodicity properties. Therefore the
maximum principle ensures u(t, y) � 0 on [0, T )× [

0, 1
2

]
. We deduce from ϕt = u(t, ϕ) that

at every fixed x ∈ [
0, 1

2

]
, ϕ(t, x) decreases by nonnegative values as t ↑ T . Therefore

limt↑T ϕ(t, x) exists and is nonnegative for every x ∈ [
0, 1

2

]
. If y ∈ [0, x], we have

by the orientation-preserving property that 0 � ϕ(t, y) � ϕ(t, x) as t ∈ [0, T ) so that
limt↑T ϕ(t, x) = 0 would imply limt↑T ϕ(t, y) = 0 for all y ∈ [0, x].

The previous observations show that in order to prove that ϕ(t, x) flattens out in the limit
t ↑ T , it is enough to prove that for some x ∈ (

0, 1
2

]
we have limt↑T ϕ(t, x) = 0.

Assume the contrary. We would have that

ϕ(t, x0) � lim
t↑T

ϕ(t, x0) = ε > 0 t ∈ [0, T ). (4.13)

Relation (4.12) shows that m(t, ϕ(t, x)) = 0 for all (t, x) ∈ [0, T ) × [0, x0]. That is,
m(t, y) = 0 on [0, ϕ(t, x0)] for every t ∈ [0, T ). Combining this with (4.13), we obtain by
the spatial oddness of m that

m(t, y) = 0 (t, y) ∈ [0, T )× [−ε, ε]. (4.14)

Under these circumstances we do not have that ux(t, 0) → −∞ as t ↑ T . Indeed, from (4.14)
and the uniform bound we have on u(t, x) for (t, x) ∈ [0, T ) × S we can infer an uniform
bound on uxx(t, x) for (t, x) ∈ [0, T )×[−ε, ε]). But if aC2-function and its second derivative
are uniformly bounded on an interval, a Taylor expansion shows that the first derivative will
also be uniformly bounded. On the other hand, ux(t, 0) → −∞ as t ↑ T is exactly what
happens! The obtained contradiction proves that ϕ(t, x) flattens out in the limit t ↑ T . �
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5. Conclusion

The idea of studying geodesic flow in order to analyse the motion of inertial continuum
mechanical systems is due to Arnold [1]. For discussions of this aspect for the Euler equation
of an ideal fluid we refer to [23], while the geodesic property for certain ideal geophysical fluid
flows is presented in [42], see also [38] for the motion of an ideal magnetohydrodynamical
fluid. This approach has the appealing feature that it represents the Lagrangian formulation of
the mechanical problem. However, the conceptual and technical problems of global analysis
that arise are very intricate so that the approach is mostly limited to recasting the equation
of motion into the form of geodesics on certain infinite-dimensional groups and obtaining
results about the geodesic flow on the configuration space [1, 38, 42] by arguments that are
rather heuristic in character [2, 3]. In the case of Euler’s equation in hydrodynamics, progress
in the direction of the geometric approach was made by enlarging the configuration space to
spaces with a more convenient structure and analysing on these spaces related aspects that
are of relevance in the study of the motion of an ideal fluid [22]. The results obtained so far
for the actual configuration space have a formal character in view of the serious analytical
difficulties encountered: a rigorous passage in this case from the enlarged configuration space
to the group of smooth diffeomorphisms remains an open question, for a review of the state
of the art see [27].

In this paper the one-dimensional compressible analogue of the description of the Euler
equation for a perfect fluid by means of geodesic flow is considered. The fact that we deal
with a one-dimensional problem makes it possible to provide a rather in-depth study of the
qualitative structure of the geodesic equation. We perform a study of the geodesic motion on the
configuration space (since we deal with a spatially periodic problem, the configuration space is
the group of orientation-preserving diffeomorphisms of the circle—we exclude discontinuities
and fluid interpenetration) leading to results about the model in mathematical physics that is
under investigation. We prove that a state of the system is transformed to another nearby
state by going through a uniquely determined flow that minimizes the energy and analyse
the breakdown of the geodesic flow. To the best of our knowledge, the question of whether
the least action principle holds in the configuration space (of volume-preserving smooth
diffeomorphisms cf section 1) for the Euler equation of hydrodynamics is a question that
still remains open18. In this context, we admit that it is worth having a model in which
the geometric approach proves to be a powerful tool for studying rigorously the infinite-
dimensional configuration space of the underlying hydrodynamical problem. Our results
show that such a model is provided by the H 1 right-invariant metric (and not by the L2

right-invariant metric) on the group of orientation-preserving diffeomorphisms of the circle.
Regarding possible extensions of this work, let us first note that, if instead of considering

the periodic motion of (1.2), we are interested in solutions that vanish at infinity, to endow the
corresponding configuration space of diffeomorphisms of the line with a manifold structure,
one has to impose certain asymptotic conditions at infinity for these diffeomorphisms. This
amounts to working in weighted spaces. It is reasonable to expect that our results about the
geodesic flow of theL2 andH 1 right-invariant metric are valid in this setting as well. However,
dealing with the arising weighted spaces is technically more cumbersome. Even if the study
of the geodesic flow in this case is still quite incomplete, the rather formal association of the
geodesic flow with solutions of (1.2) decaying at infinity is very useful in the study of the
existence of permanent and breaking waves for the hydrodynamic model (1.2), see [12]. From

18 The understanding is still incomplete but some significant results were obtained: in [40] it is proved that in three
dimensions there exists a pair of volume-preserving diffeomorphisms that cannot be connected by a shortest path
(a priori this does not rule out the possibility that the attractive variational approach works locally).
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a qualitative point of view, perhaps the most interesting question is whether any two elements
in D (or in the group of diffeomorphisms of the line), endowed with the H 1 right-invariant
metric, can be joined by a geodesic and, if that is the case, whether the geodesic is length
minimizing. �
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